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Abstract
Advances in Natural Language Processing (NLP) have revo-
lutionized the way researchers and practitioners address cru-
cial societal problems. Large language models are now the
standard to develop state-of-the-art solutions for text detec-
tion and classification tasks. However, the development of
advanced computational techniques and resources is dispro-
portionately focused on the English language, sidelining a
majority of the languages spoken globally. While existing
research has developed better multilingual and monolingual
language models to bridge this language disparity between
English and non-English languages, we explore the promise
of incorporating the information contained in images via mul-
timodal machine learning. Our comparative analyses on three
detection tasks focusing on crisis information, fake news,
and emotion recognition, as well as five high-resource non-
English languages, demonstrate that: (a) detection frame-
works based on pre-trained large language models like BERT
and multilingual-BERT systematically perform better on the
English language compared against non-English languages,
and (b) including images via multimodal learning bridges this
performance gap. We situate our findings with respect to ex-
isting work on the pitfalls of large language models, and dis-
cuss their theoretical and practical implications.

Introduction
Users of social computing platforms use different languages
to express themselves (Mocanu et al. 2013). These expres-
sions often give us a peek into personal-level and societal-
level discourses, ideologies, emotions, and events (Kern
et al. 2016). It is crucial to model all of these different lan-
guages to design equitable social computing systems and to
develop insights that are applicable to a wider segment of
the global population.

In recent years, we have seen remarkable ability in us-
ing linguistic signals and linguistic constructs extracted
from social media and web activity toward tackling soci-
etal challenges, whether in detecting crisis-related infor-
mation (Houston et al. 2015) or identifying depression-
related symptoms (De Choudhury et al. 2013). While earlier
approaches relied on qualitative language inference tech-
niques (Crook et al. 2016), using pre-existing dictionar-
ies (Pennebaker, Francis, and Booth 2001), and traditional
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Figure 1: Overview figure. We use multimodal (image +
text) learning to overcome the language disparity that exists
between English and non-English languages. The figure il-
lustrates an example of a social media post that is correctly
classified in English but misclassified in Spanish. Includ-
ing the corresponding image leads to correct classification
in Spanish as well as other non-English languages.

classifiers (Glasgow, Fink, and Boyd-Graber 2014), more
recent approaches leverage the advances in deep learning-
based language modeling techniques. Large pre-trained
models like BERT (Devlin et al. 2018) are frequently used
to train classifiers in tasks pertaining to social good (Sing-
hal et al. 2019; Sun, Huang, and Qiu 2019) and are now a
new standard to build state-of-the-art classification systems
to support real-world decision-making.

As Joshi et al. (2020) illustrate, these rapidly evolving
language technologies and their applications are largely fo-
cused on only a very small number of over 7000 languages
in the world. A majority of the research in natural language
processing (NLP) is focused on a few high resource lan-
guages, and disproportionately on English (Mielke 2016;
Bender 2019). The development of systems that can model
languages beyond English is important for ensuring (a)
inclusion of communities, (b) equitable extension of ser-
vices that are driven by these language technologies to
diverse groups, and (c) preservation of endangered lan-
guages (Muller et al. 2021). Especially in the context of
social computing, language-specific lapses can lead to in-



equitable outcomes. For instance, lower detection abilities
on Twitter posts published in Spanish could possibly lead
to inequitable humanitarian interventions in times of cri-
sis; and, the lack of powerful misinformation detectors for
the Chinese language can possibly lead to situations where
specific-language speaking individuals are more vulnerable
to health-related misinformation. As BERT-like monolin-
gual and multilingual models take a central role in build-
ing approaches to address crucial societal tasks, the bias
toward the English language can propagate, reinforce, and
even exacerbate the existing inequities that many under-
served groups face (PewResearch 2018).

Existing attempts to bridge this gap between English and
non-English languages have focused on developing better
multilingual and monolingual (non-English) language mod-
els (Nozza, Bianchi, and Hovy 2020). In this work, we ex-
plore the promise of information that lies in other comple-
mentary modalities, specifically images (Figure 1). Consid-
ering images as an additional modality has proven to be ben-
eficial in a wide range of scenarios — from accurately esti-
mating dietary intake in a pediatric population (Higgins et al.
2009), to creating effective questionnaires (Reynolds and
Johnson 2011). The underlying idea stems from the simple
fact that images are not bound by any language. We propose
the use of multimodal learning, which jointly leverages the
information in related images and text, to boost performance
on the non-English text and effectively bring it closer to the
performance on English text. More concretely, we study the
following two research questions in this work:
RQ1: Does using large language models for social comput-
ing tasks lead to lower performance on non-English lan-
guages when compared to the English language?
RQ2: Can inclusion of images with multimodal learning
help in bridging the performance gap between English and
non-English models?

To this end, we study the performance of fine-tuned
BERT-based monolingual models and multilingual-BERT
on three distinct classification tasks that are relevant to so-
cial computing: (i) humanitarian information detection dur-
ing crisis (Ofli, Alam, and Imran 2020), (ii) fake news detec-
tion (Shu et al. 2017), and (iii) emotion detection (Duong,
Lebret, and Aberer 2017). These tasks involve categorizing
posts/articles published on the web into real-world concepts
that help determine, for instance, the type of humanitarian
effort required during a crisis or the veracity of published
news. Besides English, we consider five high-resource lan-
guages: Spanish, French, Portuguese, (Simplified) Chinese,
and Hindi. Via extensive comparative analysis on these ex-
isting datasets, we demonstrate that (a) large language mod-
els — whether monolingual or multilingual — systemati-
cally perform better on English text compared to other high-
resource languages, and (b) incorporating images as an ad-
ditional modality leads to considerably lesser deviation of
performance on non-English languages with respect to that
on English1. We conclude by discussing the implications
of these findings from both practical and theoretical stand-

1Project webpage with resources: https://multimodality-
language-disparity.github.io/

points, and situate them with respect to prior knowledge
from the domains of NLP, multimodal learning, and social
computing.

Related Work
We discuss three major themes of research that are relevant
to our work: the use of large language models in developing
approaches for social computing tasks, the discussion of the
pitfalls of large language models and their treatment of non-
English languages, and the role of multimodal learning in
developing social media classification systems.
Large language models for social computing tasks: De-
velopment and deployment of large language models —
deep learning models trained on massive amounts of data
collected from the web, have transformed not only the field
of NLP but also related fields that leverage text data to
make inferences (Rasmy et al. 2021). To this end, large lan-
guage models have been used for various applications in
social computing (Arviv, Hanouna, and Tsur 2021; Choi
et al. 2021). The effectiveness of language models in ad-
dressing these tasks can be primarily attributed to two fac-
tors: (i) they are trained on massive amounts of unanno-
tated text data, leading to a general understanding of natural
language, and (ii) they can be easily fine-tuned for specific
tasks with moderately-sized annotated data to demonstrate
task-specific understanding. Several language models such
as BERT (Devlin et al. 2018) and T5 (Raffel et al. 2020)
have been developed for the English language. Since these
models cover only English, large multilingual variants like
mBERT (Devlin et al. 2018) and mT5 (Xue et al. 2021)
have also been developed to model over a hundred other
languages beyond English. These language models (both
monolingual and multilingual) are widely adopted to de-
velop state-of-the-art approaches for several tasks where the
textual modality withholds key information.
Language disparity in NLP: Scholars have discussed the
disproportionate focus in NLP research on the English lan-
guage (Bender 2019; Joshi et al. 2020; Mielke 2016). Since
approaches to address social computing tasks are increas-
ingly relying on NLP techniques centered around large lan-
guage models, it is important to understand the possible im-
plications of this disproportionate focus on the state of social
computing research. Prior studies have tried to understand
the pitfalls of using large language models — environmental
and financial costs (Strubell, Ganesh, and McCallum 2019),
reliance on data that represents hegemonic viewpoints (Ben-
der et al. 2021), encoding biases against marginalized popu-
lations (Basta, Costa-jussà, and Casas 2019). However, our
work focuses on comparing English language models with
non-English language models in a social computing context.
Similar to English, multilingual variants of language models
are used to develop the state-of-the-art2 approaches for mul-
tiple high-resource non-English languages (Nozza, Bianchi,
and Hovy 2020). To this end, previous research has focused
on understanding how multilingual language models treat
various non-English languages relative to each other, espe-

2Leaderboard: https://bertlang.unibocconi.it/
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Figure 2: Illustrative examples from considered multimodal datasets. We consider three classification datasets for our ex-
periments: (A) crisis humanitarianism dataset (number of classes: 5; infrastructure and utility damage: 10%, rescue
volunteering or donation effort:14%, affected individuals: 1%, other relevant information:22%, & not
humanitarian:53%), (B) fake news detection dataset (number of classes: 2; fake:21% & real:79%), and (C) emotion detec-
tion dataset (number of classes: 4; creepy:22%, rage:19%, gore:25%, & happy:34%).

cially the contrast between high-resource and low-resource
languages (Pires, Schlinger, and Garrette 2019; Wu and
Dredze 2020; Nozza, Bianchi, and Hovy 2020; Muller et al.
2021). In this work, we do not focus on the general pitfalls of
large language models or comparisons across non-English
languages. Instead, we aim to establish the language dis-
parity between English and non-English languages that is
caused due to the adoption of large language models.
Multimodal learning: Multimodal learning involves relat-
ing information from multiple content sources. On the web,
the text is often associated with images, especially on so-
cial media platforms like Twitter, Instagram, and Facebook.
Multimodal learning allows us to combine modality-specific
information into a joint representation that captures the real-
world concept corresponding to the data (Ngiam et al. 2011).
To this end, inference based on multimodal learning has
demonstrated better performance than both text-only and
image-only methods, especially in scenarios where access
to complementary information can be crucial (e.g., assessing
whether a Twitter post (image + text) is about disaster (Ofli,
Alam, and Imran 2020), or if a news article (image + title) is
fake (Singhal et al. 2020), whether the Reddit post conveys
rage (Duong, Lebret, and Aberer 2017)). However, the stud-
ies that demonstrate the effectiveness of multimodal learning
do so while making comparisons against language-specific
text-only methods, without making any comparisons across
different languages. In this work, we aim to use multimodal
learning, more specifically images, to bridge the gap be-
tween English and non-English languages.

Datasets
To achieve robust and generalizable findings, we utilize
a comparative analytic approach on three different pre-
existing datasets that cover issues like humanitarian infor-
mation processing, fake news detection, and emotion de-
tection. Figure 2 presents some examples from the three
datasets discussed below as well as the proportion of classes.
Multimodal crisis humanitarian dataset: In times of

crises, social media often serves as a channel of commu-
nication between affected parties and humanitarian organi-
zations that process this information to respond in a timely
and effective manner. To aid the development of computa-
tional methods that can allow automated processing of such
information and, in turn, help humanitarian organizations in
gaining real-time situational awareness and planning relief
operations, Alam et al. (Alam, Ofli, and Imran 2018) curated
the CrisisMMD dataset. This multimodal dataset comprises
7, 216 Twitter posts (images + text) that are categorized into
5 humanitarian categories. The dataset covers 7 crises that
occurred in 2017 all over the globe (3 hurricanes, 2 earth-
quakes, 1 wildfire and floods). We formulate the task of hu-
manitarian information detection as a multi-class classifica-
tion problem, and use the standardized training (n = 5263),
evaluation (n = 998), and test (n = 955) sets in our experi-
ments. We maintain the exact same training, validation, and
test splits for all the experiments that involve this dataset.

Multimodal fake news dataset: Ease of publishing news on
online platforms, without fact-checking and editorial rigor,
has often led to the widespread circulation of misleading in-
formation on the web (Lazer et al. 2018). Shu et al. (2017;
2018) curated the FakeNewsNet dataset to promote research
on multimodal fake news detection; it comprises full-length
news articles (title + body) from two different domains: pol-
itics (fake/real labels provided by PolitiFact) and entertain-
ment (fake/real labels provided by GossipCop) and the cor-
responding images in the articles. The fake news detection
task can therefore be formulated as a binary classification
task, where the label:0 corresponds to the real class and
the label:1 corresponds to the fake class. We use the pre-
processed version of the dataset provided by Singhal et al.
(2020) and consider only the title of the news article for our
experiments while dropping the body of the article. Further-
more, we combine the two domains (entertainment and pol-
itics) to create a single dataset and use the same train and
test splits like Singhal et al. We, however, randomly split the
original train set in 90 : 10 ratio to create an updated train



Language Fluency Meaning Cohen’s κ
Spanish (es) 4.01 4.10 0.81
French (fr) 4.07 4.24 0.83
Portuguese (pt) 3.98 4.22 0.86
Chinese (zh) 4.06 4.29 0.84
Hindi (hi) 3.91 4.12 0.82

Table 1: Quality assessment of machine translation. Aver-
age scores assigned by human annotators on a 5-point Likert
scale (1 − 5) for translation quality of generated text, and
the agreement scores between annotators for each language
for the fluency scores. N = 200 examples per language per
dataset; 3 annotators per example.

and validation set. Effectively, our final train, validation, and
test sets comprise 9502, 1055, and 2687 news articles, each
example containing the title of the news and an image.

Multimodal emotion dataset: Using user-generated con-
tent on the web to infer the emotions of individuals is an
important problem, with applications ranging from targeted
advertising (Teixeira, Wedel, and Pieters 2012) to detect-
ing mental health indicators (De Choudhury, Counts, and
Horvitz 2013). To this end, we collect the dataset intro-
duced by Duong, Lebret, and Aberer ( 2017) for the task of
multimodal emotion detection. The dataset comprises Red-
dit posts categorized into 4 emotion-related classes, creepy,
gore, happy, and rage, where each post contains an im-
age and text. We crawled the images from Reddit using the
URLs provided by the authors and randomly split the dataset
in a 80:10:10 ratio to obtain the train (n = 2568), validation
(n = 321), and test (n = 318) sets. Similar to other datasets,
we maintain the exact same splits for all the experiments that
involve this dataset to ensure consistent comparisons.

Curating non-English datasets: All the three datasets dis-
cussed above only have texts (Twitter posts, news articles,
and Reddit posts) in English. Given the lack of non-English
multimodal datasets, we employ machine translation to con-
vert English text into different target languages. For transla-
tion, we use the MarianNMT system, which is an industrial-
grade machine translation system that powers Microsoft
Translator (Junczys-Dowmunt et al. 2018). As target lan-
guages, we consider the following five non-English lan-
guages: Spanish (es), French (fr), Portuguese (pt), Sim-
plified Chinese (zh), and Hindi (hi). Together, these five
languages represent culturally diverse populations – minor-
ity groups in the United States (Hispanics), Asians, and the
Global South, and are written in various scripts – Latin (es,
fr, and pt), Hanzi (zh), and Devanagari (hi). It is worth not-
ing that none of these five non-English languages are consid-
ered to be low-resource languages (Hedderich et al. 2021) –
which is a more appropriate designation for languages like
Sinhala, the Fijian language, and Swahili. However, since
these languages are sufficiently high-resource languages,
MarianNMT can produce high-quality translations in these
languages from the original English text.

We use the pre-trained language-specific translation mod-
els of MarianNMT, made available via HuggingFace (Wolf
et al. 2019), to translate the text part of each example in the

Language Fluency Meaning Cohen’s κ
Spanish (es) 4.21 4.33 0.85
French (fr) 4.19 4.29 0.82
Portuguese (pt) 4.08 4.36 0.79
Chinese (zh) 4.31 4.40 0.85
Hindi (hi) 4.39 4.45 0.87

Table 2: Quality assessment of human translation for cri-
sis humanitarianism dataset. Average scores assigned by
human annotators on a 5-point Likert scale (1− 5) for trans-
lation quality of generated text, and the agreement scores
between annotators for each language for the fluency scores.
N = 200 examples per language; 3 annotators/example.

three datasets to the five target language (en → es, fr, pt,
zh, hi). Before translating, we pre-processed the English
text to remove URLs, emoticons, platform-specific tokens
(like ‘RT’ for indicating retweets on Twitter), and symbols
like @ and #. We also expanded negatives like can’t and
won’t to ‘can not’ and ‘will not’. Overall, translating the En-
glish text to five non-English languages gives us 6 differ-
ent versions of each of the three datasets discussed above,
where each version differs only in terms of the language of
the text. It is worth emphasizing that the train, validation,
and test splits remain the same across different languages;
this is done to ensure a meaningful comparison of classifica-
tion models’ performance across different languages.

Human-translated subset for crisis humanitarianism:
Besides the machine-translated text, we also obtain manual
translations for a subset of examples from the test set of the
Crisis Humanitarianism dataset. For Spanish, French, and
Portuguese, we recruited workers from Amazon Mechanical
Turk (AMT) who were designated as ‘Masters’ and profi-
cient in both English and the target language. For Chinese
and Hindi, we obtained annotations from doctoral students
fluent in both English and Chinese/Hindi. The recruited par-
ticipants translated 200 examples from the test set for each
non-English language. The annotators were shown both the
original Twitter post and were instructed to translate the
text to the target language while maintaining grammatical
coherence and preserving semantic meaning. We use this
manually-translated subset of the test set for evaluation pur-
poses alone — allowing us to observe the validity of ob-
served trends on a cleaner dataset. Next, we assess the qual-
ity of machine- and human-translated text.

Human evaluation of translation quality: MarianNMT
is the engine behind Microsoft Translator, a system that
demonstrates translation quality that is close to human par-
ity for specific languages and in constrained settings (Mi-
crosoft 2019). We conduct an independent evaluation of the
generated translations of examples from our datasets. For
this, we randomly sampled 200 examples from each dataset
(600 examples in total) and asked human annotators to as-
sess the translation quality. Similar to above, the recruited
annotators were AMT workers for Spanish, French, and Por-
tuguese, and doctoral students for Chinese and Hindi. Each
of the 3000 (i.e., 600 × 5) translation pairs was annotated
by 3 annotators where they responded to the following two
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Figure 3: Overview of the adopted methodology. After using machine translation to obtain high-quality translations of the
English text in our datasets (1), we train language-specific text-only classification models (2A) and image-only classification
models (2B). The multimodal classifier (3) fuses the representations obtained from trained text-only and image-only models,
and predicts the label based on joint modeling of the input modalities.

questions using a five-point Likert scale (1: strongly dis-
agree, . . . , 5: strongly agree): (i) Is the <Spanish>3 text
a good translation of the English text?, and (ii) Does the
<Spanish> text convey the same meaning as the English
text? While the first question encouraged the annotators (i.e.,
AMT workers for Spanish, French, and Portuguese, and doc-
toral students for Chinese and Hindi) to evaluate the qual-
ity of the translations, including grammatical coherence, the
second question encouraged them to assess the preservation
of meaning in the generated translation, a relatively relaxed
assessment. As shown in Table 1, the annotators’ responses
to the first question indicate that the translation qualities
were reliable. We observe high average scores on the Lik-
ert scale as well as strong inter-annotator agreements (com-
puted using Cohen’s κ) for all five languages. For the second
question, the average scores on the Likert scale are consis-
tently ≥ 4.10 for all the five languages, indicating almost
perfect preservation of meaning after translation from the
English text to the target language.

Finally, we conducted a similar assessment of the quality
of the human-translated subset of the Crisis Humanitarian-
ism dataset. Each of 1000 (i.e., 200 × 5) translation pairs
were similarity annotated by 3 annotators. As expected, Ta-
ble 2 shows that the fluency and meaning preservation in the
human-translated text is better than the machine-translated
text with strong inter-annotator agreement scores.

In the upcoming sections, we describe the training and
evaluation of the classification models, and the results for
RQ1 and RQ2. Figure 3 provides an overview of our method.

3The language name was changed as per the target language
for which the annotators were rating. Also, we inserted some
“attention-check” examples during the annotation process to en-
sure the annotators read the text carefully before responding. This
was done by explicitly asking the annotators to mark a randomly-
chosen score on the Likert scale regardless of the original and trans-
lated text. We discard the annotations from annotators who did not
respond to all the attention-check examples correctly.

Language Disparity with Language Models
In this section, we focus on RQ1: whether using large lan-
guage models for classification tasks results in a system-
atic disparity between the performance on English and non-
English text. We use pre-trained language models and fine-
tune them on the specific classification task using language-
specific labeled datasets.
Classification models for English: We use two pre-
trained language models: DistilBERT (Sanh et al. 2019)
(distilbert-base-cased on HuggingFace) and Distilm-
BERT (distilbert-base-multilingual-cased on Hug-
gingFace) to classify the English text. We fine-tune the pre-
trained language models on the 3 datasets discussed above
by using the respective training sets. The process of fine-
tuning a language model involves taking a pre-trained lan-
guage model4 and replacing the “pre-training head” of the
model with a randomly initialized “classification head”. The
randomly initialized parameters in the classification head
are learned by fine-tuning the model on classification exam-
ples while minimizing the cross-entropy loss. To train the
English language classification models for each dataset, we
use Adam optimizer (Kingma and Ba 2014) with a learning
rate initialized at 10−4; hyper-parameters are set by observ-
ing the classification performance achieved on the respective
validation set. We use early stopping (Caruana, Lawrence,
and Giles 2000) to stop training when the loss value on the
validation set stops to improve for 5 consecutive epochs.
Classification models for non-English languages: To clas-
sify the non-English languages into task-specific categories,
we use two set of pre-trained language models: (a) mono-
lingual models and (b) multilingual model called Distilm-
BERT (distilbert-base-multilingual-cased on Hug-

4Large language models are typically pre-trained in a self-
supervised manner (e.g., predicting a masked word, given other
surrounding words that contextualize the masked word (Devlin
et al. 2018)) using corpora that comprises billions of words.



Language - Model Crisis Humanitarianism Fake News Detection Emotion Detection
F1 Precision Recall Accuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy

Monolingual BERTs
English - DisilBERT 0.71 0.72 0.70 0.80 0.59 0.64 0.56 0.85 0.79 0.79 0.79 0.80
Spanish - BETO 0.64 0.67 0.63 0.78 0.54 0.63 0.47 0.84 0.75 0.76 0.75 0.77
French - CamemBERT 0.69 0.69 0.69 0.77 0.56 0.60 0.53 0.84 0.76 0.76 0.76 0.78
Portuguese - BERTimbau 0.67 0.67 0.68 0.77 0.57 0.58 0.55 0.84 0.71 0.72 0.70 0.73
Chinese - ChineseBERT 0.65 0.64 0.66 0.75 0.56 0.61 0.51 0.84 0.72 0.72 0.72 0.74
Hindi - HindiBERT 0.63 0.62 0.64 0.74 0.54 0.59 0.51 0.83 0.70 0.71 0.69 0.71

Multilingual BERT
English - mBERT 0.70 0.71 0.70 0.79 0.61 0.63 0.59 0.85 0.77 0.78 0.77 0.79
Spanish - mBERT 0.62 0.65 0.61 0.77 0.57 0.59 0.55 0.84 0.74 0.74 0.74 0.75
French - mBERT 0.68 0.68 0.69 0.77 0.58 0.59 0.56 0.84 0.72 0.72 0.72 0.73
Portuguese - mBERT 0.66 0.67 0.67 0.77 0.54 0.55 0.53 0.83 0.71 0.71 0.71 0.72
Chinese - mBERT 0.62 0.61 0.64 0.74 0.54 0.60 0.49 0.84 0.69 0.70 0.69 0.71
Hindi - mBERT 0.47 0.48 0.47 0.66 0.43 0.54 0.35 0.82 0.64 0.65 0.64 0.67

Table 3: Disparity between English and non-English languages using monolingual and multilingual models. Performance
of the task and language-specific text-only classification models on 3 datasets and 6 languages.

gingFace). For monolingual models, we refer to the leader-
board maintained by Nozza, Bianchi, and Hovy (2020) and
select the best performing models for a specific language.
Namely, we select BETO for modeling Spanish text (Cañete
et al. 2020), CamemBERT for French (Martin et al. 2020),
BERTimbau for Portuguese (Souza, Nogueira, and Lotufo
2020), ChineseBERT for Chinese (Cui et al. 2020), and
HindiBERT for Hindi (Doiron 2020). We adopt the same
model training and hyper-parameter selection strategies as
for the English language models discussed above. Train-
ing a classification model for each of the five non-English
languages across the three tasks gives us a total of 30 non-
English text classification models. Our training strategies al-
low us to compare the best text classification models for all
the languages for each of the three tasks individually.

Fine-tuned text representations: Once fine-tuned, the text
classifiers can be used to extract representations for any in-
put text by taking the output of the penultimate layers. These
representations, also called embeddings, capture attributes
of the text that the model has learned to use for categorizing
the input into the target classes, and therefore can be fed to
the multimodal classifier as a representation of the text part
of the multimodal input. We obtain this latent representation
of input text, denoted by vector T (with dimension 768), by
averaging the token-level outputs from the penultimate layer
of the fine-tuned classification models.

Evaluation metrics: We compute standard classification
metrics to evaluate the performance these text-only classi-
fiers on the test sets of respective datasets. Since crisis hu-
manitarian post detection and emotion detection are multi-
class classification tasks, we compute macro averages of
class-wise F1, precision, and recall scores along with the
overall classification accuracy. However, since fake news
detection is a binary classification task, we compute the
F1, precision, and recall scores for the positive class (i.e.,
label:1 = fake). Table 3 summarizes the performance
of the text-only classifiers discussed above. Since the per-
formance of deep learning models, especially BERT-based
large language models, can possibly change with initializa-
tion schemes (Sellam et al. 2021), we vary the random ini-

tialization across different runs of the models and report the
averages from 10 different runs.
Performance on English vs. non-English languages: In
Table 3, we observe that the performance of text-only clas-
sification models is higher when the input is in the English
language when compared against the performance of mod-
els that take other high-resource non-English languages as
input. This trend is consistent across (i) both monolingual
and multilingual models, (ii) the three tasks considered in
this work as well as (iii) across all the classification metrics.
For monolingual and multilingual models, the gap in per-
formance on English and non-English languages varies with
the task at hand as well as the non-English language being
considered. For instance, for the crisis humanitarianism task
with monolingual models, the drop in F1 score of Spanish
with respect to that of English is 9.5%, while it is 5.1% for
the emotion detection task. For the same task, e.g., emotion
detection, using monolingual models leads to performance
drops that vary from 5.1% for Spanish to 11.4% for Hindi.
It is noteworthy that the performance on non-English lan-
guages relative to each other maintains a near-uniform pat-
tern across the three tasks for both monolingual and mul-
tilingual models – the performance is consistently the worst
for Hindi; the performance on Chinese and Portuguese is rel-
atively better, and the performance on Spanish and French is
best when compared against other non-English languages.
We revisit this observation and its potential causes in the
Discussion section. In sum, our results indicate a language
disparity exists due to the use of large language models in
varied classification tasks — whether monolingual or mul-
tilingual. We recall that the adopted methodology – fine-
tuning of pre-trained language models – is representative
of the state-of-the-art NLP techniques that are frequently
adopted for solving classification tasks (Li et al. 2020).

Benefits of Multimodal Learning
In this section, we focus on RQ2: can we leverage images
with the help of multimodal learning to overcome the dis-
parity between English and non-English languages.
Image-Only classification model: To investigate the pre-



Input Crisis Humanitarianism Fake News Detection Emotion Detection
F1 Precision Recall Accuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy

Image-only 0.42 0.45 0.42 0.52 0.15 0.54 0.09 0.81 0.94 0.94 0.94 0.95
Monolingual BERTs

English + Image 0.73 0.74 0.72 0.82 0.60 0.63 0.58 0.85 0.85 0.87 0.84 0.86
Spanish + Image 0.72 0.73 0.71 0.82 0.59 0.63 0.57 0.85 0.82 0.83 0.81 0.82
French + Image 0.71 0.72 0.69 0.81 0.58 0.61 0.55 0.84 0.81 0.82 0.81 0.82
Portuguese + Image 0.71 0.71 0.70 0.80 0.59 0.60 0.58 0.84 0.81 0.82 0.81 0.82
Chinese + Image 0.70 0.69 0.70 0.80 0.58 0.62 0.54 0.84 0.80 0.80 0.79 0.81
Hindi + Image 0.68 0.69 0.67 0.80 0.56 0.61 0.51 0.84 0.78 0.79 0.77 0.80

Multilingual BERT
English + Image 0.75 0.78 0.73 0.82 0.61 0.63 0.60 0.85 0.80 0.82 0.79 0.82
Spanish + Image 0.75 0.77 0.74 0.81 0.60 0.64 0.56 0.85 0.76 0.80 0.75 0.76
French + Image 0.74 0.84 0.71 0.83 0.58 0.60 0.57 0.84 0.76 0.76 0.76 0.77
Portuguese + Image 0.76 0.76 0.76 0.82 0.56 0.55 0.57 0.83 0.77 0.77 0.78 0.79
Chinese + Image 0.73 0.75 0.71 0.80 0.55 0.52 0.57 0.83 0.77 0.79 0.76 0.79
Hindi + Image 0.64 0.68 0.61 0.78 0.46 0.57 0.38 0.83 0.75 0.76 0.74 0.76

Table 4: Image-only and multimodal classfication performance. Performance of task-specific image-only classifiers (Row
1) and task- and language-specific multimodal classifiers (both monolingual and multilingual).

dictive power of images without textual information, we de-
velop and evaluate image-only classifiers for each dataset.
Similar to text classifiers, we apply a fine-tuning approach
to train the task-specific image classifiers. We first freeze
the weights of VGG-16 (Simonyan and Zisserman 2015), a
popular deep Convolutional Neural Network, pre-trained on
ImageNet (Deng et al. 2009), a large-scale generic image
classification dataset. Then, we swap the last layer from the
original model to three fully connected hidden layers with
dimensions 4096, 256, and num-of-classes, respectively.
Finally, retrain these three layers to adapt the image distri-
bution in each dataset.

As images in our datasets have various dimensions, we
apply a standard image pre-processing pipeline so that they
can fit the pre-trained VGG-16 model’s input requirement.
We first resize the image so that its shorter dimension is 224,
then we crop the square region in the center and normalize
the square image with the mean and standard deviation of
the ImageNet images (Deng et al. 2009).

To train and evaluate image-specific classifiers, we use
the same splits in text-only models to divide images into
the train, validation, and test sets. We use Adam opti-
mizer (Kingma and Ba 2014) with a learning rate of 10−4 for
each dataset. To avoid overfitting, we use early stopping to
stop training when the loss value on the validation set stops
to improve for 10 consecutive epochs. Finally, we extract the
image embeddings, denoted by I, from image-specific clas-
sifiers by computing the neuron activations from the penul-
timate layer (with dimension 256) as a latent representation
of the image information for our multimodal models.

Multimodal classification model: We implement a multi-
modal classifier (Ngiam et al. 2011) that fuses the latent rep-
resentations of individual modalities (text and image) to per-
form classification based on the joint modeling of both input
modalities. We feed the concatenation of fine-tuned text and
image representations (i.e., T ⊕ I) to the multimodal clas-
sifier, which is essentially a series of fully connected layers
with ReLU activation (Agarap 2018). The architecture of the
multimodal classifier comprises an input layer (1024 neu-

rons), 3 hidden layers (512, 128, 32 neurons), and an output
layer (neurons = number of classes in the dataset). We train
a multimodal classifier for each language in each task. Sim-
ilar to image-only and text-only classification models dis-
cussed above, for each training instance, we use Adam opti-
mizer (Kingma and Ba 2014) with a learning rate initialized
at 10−4. We use early stopping based on the validation set
loss to stop the training and avoid overfitting on the train set.

We use the same evaluation metrics to evaluate the image-
only and multimodal classifiers as we did for the text-only
ones, and report the average of 10 different runs in Table 4.
Additionally, in Figures 4 and 5 we present the root-mean-
squared deviation (RMSDen) values of F1 scores of non-
English languages with respect to that of the English lan-
guage for text-only and multimodal classifiers.

Multimodal learning boosts classification performance:
As Table 4 shows, the classification performance for all
the languages (English as well as non-English) improves
considerably with the inclusion of images as an additional
modality when compared against the performance of corre-
sponding text-only classification models. This trend is con-
sistent across all three datasets and both the set of models
considered in our study — monolingual as well as multi-
lingual. It is interesting to note that the benefit of including
images, as indicated by the increase in performance metrics,
is largely dependent on the informativeness of the images
towards the classification task. For instance, for fake news
detection, the image-only classifier achieves an F1 score
of 0.15, indicating poor distinguishability between real and
fake news solely based on images in a news article. Conse-
quently, the increase in the performance of the multimodal
classifier over that of the monolingual text-only classifier is
relatively marginal, ranging from 1.5% (F1 increases from
0.59 to 0.60 for English) to 3.7% (F1 increases from 0.54
to 0.56 for Hindi). In contrast, for the emotion detection
task, the image-only classifier achieves an F1 score of 0.94,
indicating extremely good distinguishability between emo-
tion categories solely based on images. As a consequence,
the increase in the performance of the multimodal classifier
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Figure 4: Comparing F1 scores on non-English and English text for both text-only and multimodal classifiers using
monolingual language models. RMSDen denotes the root-mean-square deviation of the F1 scores achieved by non-English
classifiers with respect to the that of the corresponding English classifier. The RMSDen values for multimodal models are lower
than those for monolingual text-only models.
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Figure 5: Comparing F1 scores on non-English and English text for both text-only and multimodal classifiers using
multilingual models. RMSDen denotes the root-mean-square deviation of the F1 scores achieved by non-English classifiers
with respect to the that of the corresponding English classifier. The RMSDen values for multimodal models are lower than those
for multilingual text-only models.

over that of the monolingual text-only classifier ranges from
7.6% (F1 increases from 0.79 to 0.85 for English) to 11.4%
(F1 increases from 0.70 to 0.78 for Hindi). We observe the
same trends for multilingual models as well.

Multimodal learning helps in bridging the gap between
English and non-English languages: The results discussed
so far indicate: (i) the performance of the state-of-the-art
techniques for non-English languages is worse than the per-
formance of the state-of-the-art techniques for the English
language, and (ii) incorporating images as an additional
modality using multimodal learning leads to better clas-
sification performance when compared against the perfor-
mance of text-only counterparts. However, a crucial ques-
tion remains to be answered: can multimodal learning help
in overcoming the language disparity between English and
non-English languages? To answer this, we focus on the
root-mean-square deviation (RMSDen) scores presented in
Figures 4 and 5. RMSDen is calculated by taking the root
of the average of the squared pairwise differences between
F1 scores for English and other non-English languages.
We compute the RMSDen scores for both monolingual and
multilingual models. It is clear that the RMSDen of F1

scores achieved by non-English classifiers with respect to

the F1 score achieved by the English classifier are lesser
with multimodal input when compared against text-only in-
put. For monolingual models, the drops in RMSDen values
are 50.0% (0.06 → 0.03; Figure 4(a)), 50.0% (0.04 → 0.02;
Figure 4(b)), and 28.6% (0.07 → 0.05; Figure 4(c)) for cri-
sis humanitarianism, fake news detection, and emotion de-
tection, respectively. Similarly, for the multilingual models,
the drops in RMSDen values are 54.5% (0.11 → 0.05; Fig-
ure 5(a)), 11.1% (0.09 → 0.08; Figure 5(b)), and 50.0%
(0.08 → 0.04; Figure 5(c)) for crisis humanitarianism, fake
news detection, and emotion detection, respectively. The
drop in deviation with respect to the scores for English
demonstrates that images are effective in bridging the gap
between English and non-English languages. This is also
pictorially depicted in Figures 4 and 5, as the red bars (with
multimodal input) are more uniform in length than the blue
bars (with text-only input).

Results on human-translated test set: To evaluate the per-
formance of trained models on a sample that is free from
the noise introduced by automated translators, we evaluate
all the trained models for the crisis humanitarian task on the
human-translated subset of the test set. Table 5 reinforces
our observations — the disparity between English and non-



Language & Model Crisis Humanitarianism
Language-only Multimodal

F1 score F1 score
Monolingual BERTs

English 0.68 0.72
Spanish 0.63 0.69
French 0.64 0.70
Portuguese 0.63 0.68
Chinese 0.64 0.67
Hindi 0.61 0.66

Multilingual BERT
English 0.69 0.73
Spanish 0.62 0.72
French 0.63 0.72
Portuguese 0.61 0.69
Chinese 0.60 0.66
Hindi 0.44 0.61

Table 5: Classification performance on human translated
crisis humanitarianism test set. Performance of language-
only and multimodal classifiers. The reported values are av-
erages of 10 different runs.

English languages exists due to both monolingual and mul-
tilingual language models and multimodal learning helps in
reducing this performance gap. For monolingual and multi-
lingual models, the RMSDen values drop from 0.05 to 0.04
and from 0.15 to 0.06, respectively.

Discussion
Our study demonstrates that in the context of societal tasks
– as demonstrated by our focus on three datasets – the per-
formance of large language models on non-English text is
subpar when compared to the performance on English text.
In the subsequent discussion, we highlight how this could
have possibly threatening implications on the lives of many
individuals who belong to underserved communities.

Furthermore, we empirically demonstrate that using im-
ages as an additional modality leads to a lesser difference
between the performance on English and non-English text,
as indicated by decreased RMSDen values. While existing
studies have focused on developing advanced monolingual
language models that can boost the performance on specific
non-English languages to bridge the performance gap, we
demonstrate the benefits of including other complementary
modalities, especially those that are language-agnostic. De-
creased RMSDen values indicate that if images are consid-
ered along with the text, the performance on all languages
is not only better than when only text is considered, but it is
also comparable across English and non-English languages.

Implications of language disparity with text-only mod-
els: In the context of social computing, disparities between
English and non-English languages can lead to inequitable
outcomes. For instance, as per our observations, if state-
of-the-art NLP techniques that are centered around BERT-
based language models are adopted to detect humanitarian
information during crises, the detection abilities would be
poorer for social media posts in non-English languages than
those in English, causing delayed interventions. In coun-
tries like the United States, where non-English languages

Language Proportion Crisis FakeNews Emotion
en 6 0.7 0.61 0.77
es 4 0.62 0.57 0.74
fr 5 0.68 0.58 0.72
pt 3 0.66 0.54 0.71
zh 2 0.62 0.54 0.69
hi 1 0.47 0.43 0.64
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(a) Text-only models
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hi 1 0.64 0.46 0.75
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(b) Multimodal models

Figure 6: Relation between pre-training corpus size and
classification performance. The languages on the x-axes
are ordered as per their representation in the pre-training cor-
pora of mBERT; y-axes report the F1 scores achieved on all
the considered languages and task after task-specific fine-
tuning. m denotes the slope of the task-wise trend lines.

like Spanish and Chinese are spoken by a considerable num-
ber of people (AAAS 2016), this disparity could exacerbate
the effects of discrimination and prejudice that they already
face (PewResearch 2018). Similarly, poor emotion recogni-
tion in specific non-English languages can lead to unhelp-
ful or even harmful outcomes in scenarios where the out-
put of emotion recognition informs mental health interven-
tions. Furthermore, poor fake news detection in specific non-
English languages can lead to lacking correction and miti-
gation efforts, leading to relatively worse outcomes for non-
English speaking populations.
Implications of reduced language disparity with multi-
modal models: People use multiple content modalities –
images, text, videos, and audio clips, to share updates on
social platforms. Visual modalities (like images and videos)
transcend languages and are extremely informative in sce-
narios like crisis information detection and emotion de-
tection. Combining our multimodal approach with existing
text-only approaches for better modeling of non-English text
can present complementary gains, leading to a reduced gap
between English and non-English languages. In other words,
an approach that complements existing approaches that fo-
cus on only text can be expected to provide gains even as the
language-specific text-only approaches improve and evolve.
Dependence of performance on pre-training corpus size:
The multilingual language model used in this study —
mBERT, was pre-trained on huge corpora using self-
supervised objectives (Devlin et al. 2018). The data sizes (in
GiB) in mBERT’s pre-training corpus have the relative order
en > fr > es > pt > zh > hi (Conneau et al. 2020). As
shown in Figure 6(a), the relationship between the language-
specific corpus size that mBERT is trained on and the classi-
fication performance obtained after task-specific fine-tuning,
is clear: larger representation in the pre-training corpus is re-
lated to better performance on downstream tasks. This trend
reinforces the findings of Wu and Dredze (2020) in our con-
text — the performance of large language models drops sig-
nificantly as the considered languages have less pre-training
data. This is concerning because, as Bender et al. (2021) ar-



gue, “the large, uncurated, and Internet-based datasets” that
these language models are trained on “encode the dominan-
t/hegemonic view, which further harms people at the mar-
gins.” However, as shown in Figure 6(b), incorporating im-
ages using multimodal learning leads to a weakened depen-
dence on the pre-training corpus size. This is indicated by
the reduced slopes (m) of the trend lines across all three
tasks. In effect, we demonstrate that multimodal learning,
if adopted in the fine-tuning stages of approaches that em-
ploy large language models, could help in overcoming the
well-recognized dependence of downstream performance on
language-specific pre-training corpus size.

Beyond the theoretical implications discussed above, we
believe our methods demonstrate the crucial role that mul-
timodal learning can play in the equitable dissemination of
NLP-based services to a broader range of the global pop-
ulation. The systems that make inferences based on text
data alone can be adapted to include the information con-
tained in images, wherever possible, leading to better detec-
tion abilities on the non-English text and thereby bridging
the gap between English and non-English languages. As our
evaluation on human-translated and machine-translated text
demonstrates, our proposed approach is compatible with se-
tups that infer information directly from non-English text as
well as with the approaches that first translate non-English
text to English and then infer information from the translated
text.

Limitations and future work: Large language models such
as T5 and their corresponding multilingual variants mT5
overcome several limitations of BERT and mBERT by
adopting different pre-training strategies. We specifically fo-
cused on BERT-based language models as representatives of
large language models – note that our study aimed to under-
stand the effectiveness of multimodal learning in overcom-
ing the language disparity and not the relative performance
of different language models. Since the underlying idea of
fusing image and text representations can be applied to other
language models as well, we believe that our insights and
takeaways will also generalize to them.

In the future, we intend to experiment with low-resource
languages to expand our claims to a wider set of languages.
There are two major challenges on those fronts: (i) avail-
ability of parallel data, and (ii) identifying and developing
the state-of-the-art text-only classification approaches for
low-resource languages. A translation-based data creation
pipeline will not work for low-resource languages and hence
we may either curate the data by recruiting native speakers to
translate the original examples from English or by collecting
real data from social media for different languages. Further-
more, since the state-of-the-art classification approach for
low resource languages may not be based on large language
models (Wu and Dredze 2020; Nozza, Bianchi, and Hovy
2020), we intend to identify and develop those language-
specific approaches.

Lastly, the current study focuses on bridging the gap that
exists in classification tasks. As part of future work, we
intend to explore other types of tasks that are relevant to
the social computing theme. Such tasks include, analyz-

ing the lifestyle choices of social media users (Islam and
Goldwasser 2021) and context-based quotation recommen-
dation (MacLaughlin et al. 2021). By including other modal-
ities like images, these approaches may be extended to non-
English speaking populations. However, while images are
not bound by languages, their production and perception are
culturally influenced (Hong et al. 2003). This cultural in-
fluence is more prominent in user-generated content that is
abundant on social platforms (Shen, Wilson, and Mihalcea
2019). Therefore, it is important to consider the cultural con-
founds in the production and consumption of images while
using them to train and infer from machine learning models.
Broader perspective, ethics, and competing interests: De-
veloping powerful, accessible, and equitable resources for
modeling non-English languages remains an open chal-
lenge. Our work argues that including information from
other modalities, specifically images, can present new av-
enues to progress research in this direction. We believe
this work will positively impact society by motivating re-
searchers and practitioners to develop more reliable clas-
sifiers for non-English languages with applications to so-
cietal tasks. That said, it is worth noting that since images
alone do not represent the entire cultural context, modeling
techniques for non-English languages should continue to de-
velop. Incorporation of new modalities alongside text also
comes with additional challenges — for instance, the biases
that computer vision models encode (Hendricks et al. 2018)
need to be taken into consideration, and methods need to be
developed to model cultural shifts in meaning for similar im-
ages (Liu et al. 2021). The authors involved in this study do
not have any competing interests that could have influenced
any part of the conduct of this research.

Conclusion
In sum, we have demonstrated that the adoption of large lan-
guage models for building approaches for tasks aimed at de-
tecting humanitarian information, fake news, and emotion
leads to systematically lower performance on non-English
languages when compared to the performance on English.
We discussed how such a disparity could lead to inequitable
outcomes. Furthermore, we empirically show that including
images via multimodal learning bridges this performance
gap. Our experiments yield consistent insights on 3 differ-
ent datasets and 5 non-English languages, indicating their
generalizability. We also discussed the reliance of large lan-
guage models on pre-training corpus size and how adopting
multimodal learning during fine-tuning stages can weaken
this dependence, leading to a more consistent performance
across all languages under consideration.
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