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1 ABSTRACT

With the increased in usage of artificially intelligent systems around
us, it becomes important that these systems do not reinforce exist-
ing social biases. Specifically, when using graph embeddings for
solving real world tasks based on networks, it is paramount that
these embeddings do not carry inherent social and cultural biases.
While there have been methods to generate fair embeddings for
homogeneous graphs using the notion of unbiased random walks,
there has not been any existing work where this notion is used to
generate embeddings for bipartite graphs. If we develop information
rich node embeddings for networks that are robust to bias, they can
be stored and used for multiple downstream tasks. Towards this end,
we explore the idea of unbiased random walks to improve the fair-
ness in the node embeddings, using the MovieLens 100k dataset [6].
We first construct graph embeddings for this data using node2vec
[3] and metapath2vec [2] algorithms, use them for the downstream
task of movie recommendation. After demonstrating bias in the
baselines, we introduce fairness mitigation method based on Fair-
walk [7] and design new walk strategies by to demonstrate lesser
biased results. We also impelement GraphSAGE algorithm and inco-
porate fairness into it. Out of all the strategies implemented, using
the Fairwalk strategy with metapath2vec gives the best results, and
show the lowest bias. GrpahSAGE with fairness also shows a lower
bias than its vanilla counterpart. These results pave the way for
further exploring fairness in heterogeneous graph embeddings.

2 INTRODUCTION

Our project explores the idea of unbiased random walks to improve
the fairness in the node embeddings in heterogeneous graphs. We
primarily focus on bipartite graphs and use the generated embed-
dings for the downstream task of recommendation to evaluate the
fairness. Towards this, we use MovieLens 100k dataset [6] which
consists of 100,000 edges obtained by connections between 943
users and 1682 movies. The dataset also contains demographic in-
formation for users and several attributes for each movie, which
will form the ground to design and evaluate the biases in our walk
strategies and the resulting recommendation.

Our objectives are to explore if existing graph embedding approaches
can have their training strategy modified so that they are fair com-
pared to vanilla counterparts. We assess our results by measuring
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performance on the downstream task of recommendation in terms
of fairness metrics like statistical parity and also precision and re-
call.

We implement the node2vec [3] and metapath2vec [2] baselines,
which do not incorporate any bias mitigation measures. We then try
6 different strategies, by building over the baselines and using the
Fairwalk [7] walk strategy. In each of the strategies we also experi-
ment with selecting the next node in the walk by sampling from the
probability distribution generated from ratings as weighted edges.
We also explore the inductive training strategy of GraphSAGE[4]
to incorporate fairness.

We calculate precision and recall at various values of k for both of
our baselines, shown in Table 2. We note that our metapath2vec
+ fairwalk approaches with random sampling is able to achieve
similar precision and recall with vanilla node2vec and vanilla meta-
path2vec.

In terms of overall statistical parity over the entire graph i.e all gen-
res which we denote as bias of the algorithm. metapath2vec with
fairwalk and random sampling achieves the best bias (0.17) in its
category beating node2vec (0.29) and metapath2vec with random
sampling (0.19). GraphSAGE with fairness is also able to get an
improved bias (0.17) over its non fair counterpart (0.21)

Impact. We see that introducing bias mitigation techniques, such
as Fairwalk, to generate graph embeddings does help reduce bias.
This sets the ball rolling for (atleast) a discussion around fairness
in graph embeddings. Discussion around fairness in Al, especially
language models, and an attempt to reduce bias began much later
than the inception of the said language models or their foundations,
causing significant damage. Since graph and node embeddings are
relatively newer, research of equivalent techniques in graphs, would
be more impactful in terms of preventing inherent socio-cultural
biases in downstream tasks.

3 LITERATURE SURVEY AND BASELINES

One of the first attempts to study potential bias issues inherent
within graph embeddings in a transductive way was when Rahman
et. al. proposed Fairwalk [7], a fairness-aware embedding method
that extended node2vec [3]. While node2vec uses a random walk
over a graph to generate walk traces and then extracts features
based on the learned traces, Fairwalk first partitions neighbors into
groups based on their sensitive attribute values and samples nodes
for random walk from each group with the same probability, thereby
enforcing equality of representation. However, Fairwalk is designed



for homogeneous networks and would invariably lose out on the
semantics of bipartite (heterogeneous) graphs. We aim to improve
upon this by employing metapath2vec[2] which extends node2vec
[3] by conditioning the random walk sampling based on the node
types. This demonstrate improvements over using naive homoge-
neous approaches for heterogeneous networks. We aim to introduce
fairness in the embeddings generated by metapath2vec[2].

GraphSAGE [4] is an inductive approach for generating learnt graph
embeddings and it can be done in an unsupervised, semi-supervised
or supervised way. The benefit of this method for generating em-
beddings is that it can scale well to unseen networks and nodes as it
does not require all of them to exist during training. Popular works
like PinSage [8] have adopted this for large scale recommender
systems for bipartite graphs. However, there is no study about in-
herent bias present in the embeddings.

Bose et al.[1] introduced another inductive approach for learning
unbiased embeddings by using filtering via adversarial training
with respect to the sensitive attributes. It does not use the notion
of unbiased random walks for unsupervised feature learning and
the embeddings generated can only be used for that particular
downstream task.

4 DATASET DESCRIPTION
4.1 Dataset Preparation

Source. We use the MovieLens dataset [5], which is rating data set
collected and made available on the Grouplens datasets web site by
GroupLens Research. The data was collected from the website dur-
ing the seven-month period from September 19, 1997 through April
22, 1998. We use MovieLens 100K Dataset version of the dataset.
The dataset consists of 100,000 ratings on a scale of 1 (lowest) to
5 (highest) from 943 users on 1682 movies. Each user has rated at
least 20 movies. The dataset provides demographic information like
age, gender, occupation, zip and features like movie title, release
date, video release date, IMDb URL and genre for each movie. While
our data does not have explicit ground truth labels, the presence of
an edge (rating by a user to a movie) is considered positive for the
downstream task of movie recommendation. We generate negative
samples based on what is not present in the data. (no recommenda-
tion.)

Data preprocessing. We construct an weighted, undirected, bipar-
tite graph of movies and users as nodes and the edges between
representing a user who rated a movie. To distinguish between the
IDs of the user and movie we append the strings ‘user’ and ‘movie’
reflectively as prefixes to the numeric IDs. We add the demographic
features of users viz. age, gender, occupation, zip as node attributes
and the ratings given by a user to a movie as the edge weights be-
tween the two types of nodes.

Significance To measure the fairness of the embeddings we need a
graph dataset that has sensitive attributes so that the performance
of the unbiased embeddings can be compared against that biased
embeddings in a downstream task. Since our dataset has sensitive
attributes of gender and occupation we use it for our project.
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4.2 Raw Data Statistics
The constructed graph has the properties described in Tablel:

Property Value
Number of nodes | 2625
Number of edges | 100000
Average degree 76.1905
Radius 3
Diameter 5
Density 0.02903

Table 1: Dataset (Bipartite Graph) properties

4.3 Data Analysis

After exploring our data, we had some interesting findings, which
are articulated below:

e To check the distinct network connectivity difference be-
tween male and female users, we measured how many users,
females are connected to, via user - movie - user (2 hop) links
(shown in Figure 1) and did the same for males. The propor-
tion of users connected to higher number of unique users
is more in males compared to females (by 4% normalized
percentage).

e We further assesse the occupations of users which are 2
hops away for both males and female and find that males
are connected more to engineers, programmers, students
and technicians by roughly 0.2% normalized percentage and
females are connected more to librarians, educator and other
category by roughly 0.2% normalized percentage. Other oc-
cupations seem to be almost same for both male and female.

e We also assessed if the movie genre affects the proportion of
a gender being connected to movies in that genre (shown in
Figure 2). We noticed some genres like Action have over 2%
more male users and genres like Romance and Drama have
over 2% more female users.

0.04

0.02

0.00

—0.02

—0.04

Number of such users (Male - Female} %

o 100 200 300 400 500 G600
Mumber of unique users that a user is connected to wia movies

Figure 1: Data Insight 1

Note that in the above observations, we consider percentages by
normalizing by the total count of that gender for a meaningful
comparison since there are more male users than female users. For
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Figure 2: Data Insight 3

calculating percentage difference between male and female, we
normalize the male and female histograms individually and then
subtract them.

These findings give us an insight into what (potential) biases the
graph can learn with respect to the sensitive attributes. For example,
the third insight could mean that a biased recommender system
could learn to recommend actions films to more men than women.

5 EXPERIMENTAL SETTING AND BASELINES
5.1 Classification Task.

Movie Recommendation. For both baselines, we first generate
node embeddings of the MovieLens graph. We use these embed-
dings for the downstream task of movie-user recommendation. We
adopt a supervised approach for this, where our classifier takes
as input two embedding vectors, one for user and one for item
and predict the presence or absence of an edge between them. The
presence of an edge implies recommendation and vice versa. We
use the positive class probability as the recommendation score. We
train a Logistic Regression model where the probability score of an
edge being present is used for ranking recommendations. An item
v is recommended to a user u, if the recommendation score for the
pair (u,v) ¢ E is within the top k% of all the scores received by all
candidate pairs. The resulting set of recommendations given to a
user u is denoted by p(u).

5.2 Evaluation Metrics.

5.2.1 Evaluating of recommendation system performance. To evalu-
ate the performance of each recommendation system, we use the
metrics in terms of precision@k and recall@k. In the context of
recommendation systems we are most likely interested in recom-
mending top-N movies to the user. In the notion of precision and
recall at k, k is a user definable integer that is set by the user to
match the top-N recommendations objective.

5.2.2  Evaluating Fairness. We have a bipartite graph G = (V,E)
where V.= V4 UV, and Vi NV, = 0, and the set of edges E C
{(u,v) : u € V1,v € V}. The function { : V; — zs maps users to
their attribute values. For example, for a male u, {9(u) ="male". A
sensitive attribute is denoted by S. User-item pairs (u,v) € Vi X V3
are partitioned into groups GS based on the attribute values of u,

where Gg ={(u,0) : {(u) =i,u € V1,0 € Vo }. The set of all groups

based on a sensitive attribute S is denoted by G* where in this
case, S = (male, female). For example S = g for gender. Z S denotes
the set of all possible values of S. A set of items recommended
to user u as p : V; — 22, For evaluating fairness, we use the
metric, Statistical Parity. This measure requires the acceptance
(recommendation) rates from two groups to be equal. Let P(Gg)

denote the acceptance rate for group Gg Here in our case, i would
be either the male or female group and j would be the genre of
the movies predicted. Then the statistical difference for a particular
genre j would be :

P(GS) B {(u,0) :0 € p(u) A (u,0) € G{EH
. &

The bias or statistical parity between male and female is basically
the difference between their acceptance rates. Extending this to
multiple groups (an overall statistical parity of the whole gender),
the overall statistical parity or overall bias for that algorithm can
be calculated as the standard deviation of the acceptance rate of
each group. bias(GS) = stddev({P(GS)} GS € G%)

Justification of metrics. Precision and Recall help us identify
the relevance of the recommendations done for users. Since our
proposed methods are supposed to be less biased than node2vec,
precision and recall for the former would probably be lower than
that for the latter, indicating that we deviate more from the original
biased recommendations compared to thereby not amplifying the
initial bias in the network. Statistical parity measures how indepen-
dent the algorithm is of a particular protected attribute and would
worsen in the scenario of higher bias.

5.2.3 Experiment Parameters. Train-test parameters. For train-
ing the embeddings, we split our dataset into train and test set. Out
of the 100,000 user-movie pairs, 80% pairs were used for training
and 20% were kept for testing. For movie recommendation, we
used link prediction task. Since we only had positive pairs from the
dataset, ie the movies which were rated by the users. We sampled
equal number of negative pairs from pairs which were not present
in the dataset. These positive and negative pairs combined were
used for training the Logistic Regression classifier.

Model Hyperparameters. For the logistic regression model we
used the following hyperparameters : (1) Penalty = L2 Norm, (2)
Inverse of regularization strength = 1.0. The rest were default pa-
rameters of sklearn.linear_model.LogisticRegression.

System Details. We used a 16GB RAM CPU system for our data
processing and experiments. The CPU details are : Intel(R) Core
i7 CPU, with 1.890 GHz. For GraphSAGE experiments, we used a
NVIDIA 1060 GPU.

5.3 Baselines

We implement the two baselines we plan to use for our downstream
recommendation task.

e node2vec [3]: node2vec uses a random walk over a graph
to generate walk traces and then extracts features based



on the learned traces. For node2vec we used the following
open-source repository : .

e metapath2vec [2] : This approach builds the random walk
sampling based on the node types. Since we have two node
types - movie (M) and user (U), our random walk strategy
would be either MUMU ... or UMUM...We implement meta-
path2vec using 2 strategies. In both the strategies, we ensure
that only an M is chosen after a U and the other way round.
However, in the first strategy, the next node in the walk is
sampled randomly. Whereas, in the second strategy, we use
the ratings between the nodes as edge weights and use them
as the probability distribution for sampling the next node in
the random walk.

The results and discussion for the baseline are detailed in Section 6.

5.4 Proposed Methods

5.4.1 New Walk Strategies. We extend the idea used in Fairwalk
[7] to our baseline of metapath2vec [2] approach. Assume there
are two types of nodes V7 and V; in a bipartite graph G and V4
has sensitive demographic attributes like gender, race, etc (usually
a user) and V3 has attributes like genre, etc. We can enforce an
unbiased step from V; to V; such that there is an equal likelihood
of sampling users from different demographics v; € N(v2) where
v1 € V1 in the neighbourhood of the node vy € V3. Let’s say a; are
the distinct attributes present in the neighbors of v; and f;(v;) be
the jth subgroup of neighbors grouped by a;.

For V5 to V7:

1 1
por |02 = { TN Tl (00 22) € B o1 € fi(N(e2)
0 otherwise

Thus, the sampling of the walk from user to movie in metapath2vec
would aim to be unbiased in terms of gender with respect to genre
and similarly the sampling of the walk from movie to user in meta-
path2vec would aim to be unbiased in terms of genre with respect
to gender.

Based on the above, we propose 4 new walk strategies delineated
below:

(1) metapath2vec + Fairwalk + random next node sam-
pling (RS) : While choosing the next node we follow the
MUMU... or UMUM.. strategy but also partition neighbors
into groups based on their gender values and sample nodes
for random walk from each group with the same probability,
thereby enforcing equality of representation. Within this
strategy, the next node in the walk is sampled randomly.

(2) metapath2vec + Fairwalk + weighted next node sam-
pling (WS) : Similar to the above strategy, except, we use
the ratings between the nodes as edge weights and use them
as the probability distribution for sampling the next node in
the walk.

(3) metapath2vec + Fairwalk + node2vec next node sam-
pling (NS) : While choosing the next node we follow the
MUMU... or UMUM.. strategy but also partition neighbors
into groups based on their gender values and sample nodes
for random walk from each group with the same probability,
thereby enforcing equality of representation. Within this

Sanjana Garg, Rohit Mujumdar, and Rohit Gajawada

strategy, if we are at a node c after having visited node s,
the next node d in the walk is sampled using the node2vec
sampling strategy, using the return and in-out paramaters.
metapath2vec + Fairwalk + weighted next node sam-
pling (WS) + node2vec next node sampling (NS) : Simi-
lar to the above strategy, except, we use the ratings between
the nodes as edge weights and use them as the probability dis-
tribution for sampling the next node in the walk, along with
the node2vec walk strategy. We multiply the rating weights
with the probability distribution obtained from node2vec for
each node and apply the softmax function to it to get the
final combined probability distribution, from which node d,
after having visited node s and ¢ would be sampled from.

—
N
=

Justification of Approach. Our first baseline, node2vec, does not
address the potential biases that may be learnt by the embeddings,
nor does it take into account the heterogenity of the graph. While
the second baseline metapath2vec does use a walk approach that
alternates between movie and user nodes, potential biases may
still be introduced because of a biased choice of next node in the
walk. While Fairwalk tries to rectify this, it is still designed for
homogeneous networks, and captures only structural correlations
between different "types" of nodes, making the embeddings invari-
ably lose out on the semantics of bipartite graphs. For example, in
our graph, during the random walk, if the walker is at node of type
user, then it is biased towards nodes of type movie for the next step.
This makes metapath2vec more suitable for heterogenous networks
than Fairwalk. Adding the Fairwalk sampling strategy in metap-
ath2vec, we can ensure that the semantic relationships between
different types of nodes is captured, and we also possibly get less
biased embeddings by enforcing equality of representation. Hence,
we can expect our method to perform better than baselines. We
further use the node2vec walk strategy with the return and in-out
parameters to exploit the freedom of defining neighbourhoods for
nodes and controlling the BFS-DFS exploration in the graph.
Walk Strategy Parameters. We chose to use the same hyper-
parameters for the baselines and the proposed strategies while
generating embeddings, so that the comparison would be fair. The
recommendation system result metrics and the fairness metrics for
each of these are shown in Table 2

5.4.2 GraphSage with Fairness. After our approach for meta-
path2vec with fairness, we wanted to experiment with a similar
unbiased sampling step via the AGGREGATE step in GraphSAGE.
Our aim is that such fairness based approaches can be added on
to inductive approaches like GraphSAGE. The main idea of using
GraphSAGE in our scenario, is that for every movie node embed-
ding, a certain number of user neighbours of the movie node are
sampled at random and aggregated.

However, some movie nodes might have significantly more male
users as neighbours and some other movie nodes might have sig-
nificantly more female users as neighbours. In order to possibly
introduce fairness in this sampling step, when aggregating the user
neighbours of a movie we make sure we take the same number of
male user nodes and female user nodes in the GraphSAGE with fair
AGG approach.
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Strategy k=50 k=100 k=500 k=1000
(P = Precision, R = Recall, A = Accuracy, B = Bias) P R P R P R P R | A B

node2vec 0.05 | 0.16 | 0.04 | 0.29 | 0.02 | 0.79 | 0.01 | 0.93 | 0.67 | 0.29
metapath2vec + RS 0.03 | 0.1 [0.03| 0.2 | 0.02 ]| 0.67 | 0.01 | 0.93 | 0.67 | 0.19
metapath2vec + WS 0.03 | 0.09 | 0.03 | 0.2 | 0.02 | 0.61 | 0.01 | 0.89 | 0.67 | 0.25
metapachvec + fairwalk + RS 0.04 | 0.12 | 0.03 | 0.22 | 0.02 | 0.65 | 0.01 | 0.92 | 0.67 | 0.17
metapath2vec + fairwalk + WS 0.03 | 0.11 | 0.03 | 0.19 | 0.02 | 0.63 | 0.01 | 0.91 | 0.67 | 0.18
metapath2vec + fairwalk + NS 0.03 | 0.1 | 0.03 | 0.23 | 0.02 | 0.67 | 0.01 | 0.93 | 0.67 | 0.17
metapachvec + fairwalk + NS + WS 0.04 | 0.12 | 0.03 | 0.22 | 0.02 | 0.67 | 0.01 | 0.92 | 0.67 | 0.23

Table 2: Baseline and Proposed Walk Strategy Results

Parameter Value
Embedding Dimension size 64
Number of Walks 20
Walk Length 30
node2vec return parameter (p) | 0.50
node2vec in-out parameter (p) | 0.25

Table 3: Experiment strategies hyperparameters

Method Accuracy | F1-Score | Bias
GraphSAGE 0.83 0.91 0.21
GraphSAGE with fair AGG 0.83 0.90 0.17

Table 4: GraphSAGE Results.

Hyperparameters. We use mean aggregation with K = 2. The
number of neighbours sampled is equal to 10 and in the fairness
AGG approach, we sample maximum 5 for male and maximum 5
for female. For the input embedding in the network encoder, we
use an embedding dimension of 100.

Training and experiment setup. While the embeddings of our
node2vec and metapath2vec based approaches are trained in an
unsupervised fashion, we obtain our GraphSAGE embeddings by
training the network in a supervised fashion. This is because the
unsupervised loss proposed in Hamilton et al. [4] does not make
sense intuitively for heterogenous graph because the embeddings
of nearby movie and user nodes need not be similar. We train the
GraphSAGE network to predict 1 if the rating between a user em-
bedding and a movie embedding is >= 3 and to predict 0 otherwise.
This is also why we do not compare GraphSAGE approaches di-
rectly with our node2vec and metapath2vec approaches.

6 EXPERIMENTS, RESULTS AND
DISCUSSION.

6.0.1 Recommendation system metrics. We calculate precision and
recall at various values of k for both of our baselines, shown in
Table 2. We note that our metapath2vec + fairwalk approaches with
random sampling is able to achieve similar precision and recall with
vanilla node2vec and vanilla metapath2vec.

6.0.2 Fairness Metrics. [7] In terms of overall statistical parity
over the entire graph i.e all genres which we denote as bias of
the algorithm. metapath2vec with fairwalk and random sampling

Algorithm 1: Heterogenous GraphSAGE with fair aggre-
gation

Input :Graph G(Vy,, Vin, E), depth K = 2,

weight matrices wk, non-linearity o,
differentiable aggregator function AGG,
neighbourhood function for movies

Ny : op— > 2% and

neighbourhood function for users Ny, : v,,— > 2Vm,
NNS (number of neighbour samples for AGG )
Output:node embeddings for every node (movie and user)

1 fork «— 1toK do

2 for v, € V;, do
3 if Fairness Sampling == True then
4 hIk\Iu(Um) - AGGk(hﬁ:lnale < Nu(om) where
gender(u) is Male + hfz:]l‘emale — Ny (om)
where gender(u) is Female)
5 where count(hﬁjﬂale) == count(hﬁ:}emale)
6 end
7 if Fairness Sampling == False then
8 MY, (0, & AGGK(ME™ — Nu(om))
9 end
10 hf,,, < oW*.CONCAT (b hY, ()
11 end
12 hlzjm — hlzjm ||h§m||2 Yo € Vi)
13 end
14 for k < 1 toK do
15 for v, € V, do
6 || KRy ACCKER = Non(ow)
hf, — oWF.CONCAT(MS LK, ()
17 end
1 |k —BE |IRE |2 Vo, € Vi)
19 end

achieves the best bias (0.17) in its category beating node2vec (0.29)
and metapath2vec with random sampling (0.19). GraphSAGE with
fair AGG is also able to get an improved bias (0.17) over its non
fair counterpart (0.21)
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7 CONCLUSION

Our project aimed at exploring techniques to introduce fairness in
graph embeddings. We first established the bias that get introduced
in conventional algorithms such as node2vec [3] and metapath2vec
[2]. We explored hybrid walk strategies that build upon either of
metapath2vec and node2vec, or both. We demonstrated, using the
downstream task of movie recommendation, that adopting bias
mitigation strategies reduces bias in the embeddings. We further
implement GraphSAGE [4] and demonstrate that by adding fairness
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sampling in it, the performance of the rating model does not reduce
while improving the bias of the model.

One shortcoming of the project is that we only assess fairness with
respect to one sensitive attribute (gender). We also were not able to
try unsupervised deep learning based approaches for generating
embeddings. Besides, the results of our analyses are based only on
dataset with a bipartite graph structure, which makes it to gener-
alise our findings to all heterogeneous graphs.

In the future, more deep learning based unsupervised approaches
can be explored using fairness constraints. These approaches should
be tested on even larger datasets (for example entire Pinterest,
Instagram, Twitter, etc) to assess their fairness capability at scale.
This would have a much larger impact by ensuring certain groups of
people are not treated unfair. Other extensions of the project include
experimenting with different combinations or groups of sensitive
attributes. For example, assessing how our proposed strategies
work with age + gender combinations as compared to occupation +
gender. It would be worth performing correlation analyses amongst
such combinations to see what insights can be drawn.

8 CONTRIBUTION

All team members have contributed a similar amount of effort.
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